Revisiting multiple instance neural networks

نویسندگان

  • Xinggang Wang
  • Yongluan Yan
  • Peng Tang
  • Xiang Bai
  • Wenyu Liu
چکیده

Recently neural networks and multiple instance learning are both attractive topics in Artificial Intelligence related research fields. Deep neural networks have achieved great success in supervised learning problems, and multiple instance learning as a typical weakly-supervised learning method is effective for many applications in computer vision, biometrics, nature language processing, etc. In this paper, we revisit the problem of solving multiple instance learning problems using neural networks. Neural networks are appealing for solving multiple instance learning problem. The multiple instance neural networks perform multiple instance learning in an end-to-end way, which take a bag with various number of instances as input and directly output bag label. All of the parameters in a multiple instance network are able to be optimized via back-propagation. We propose a new multiple instance neural network to learn bag representations, which is different from the existing multiple instance neural networks that focus on estimating instance label. In addition, recent tricks developed in deep learning have been studied in multiple instance networks, we find deep supervision is effective for boosting bag classification accuracy. In the experiments, the proposed multiple instance networks achieve state-of-the-art or competitive performance on several MIL benchmarks. Moreover, it is extremely fast for both testing and training, e.g., it takes only 0.0003 second to predict a bag and a few seconds to train on a MIL datasets on a moderate CPU.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HYBRID ARTIFICIAL NEURAL NETWORKS BASED ON ACO-RPROP FOR GENERATING MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE RECORDS FOR SPECIFIED SITE GEOLOGY

The main objective of this paper is to use ant optimized neural networks to generate artificial earthquake records. In this regard, training accelerograms selected according to the site geology of recorder station and Wavelet Packet Transform (WPT) used to decompose these records. Then Artificial Neural Networks (ANN) optimized with Ant Colony Optimization and resilient Backpropagation algorith...

متن کامل

A Self-Reconstructing Algorithm for Single and Multiple-Sensor Fault Isolation Based on Auto-Associative Neural Networks

Recently different approaches have been developed in the field of sensor fault diagnostics based on Auto-Associative Neural Network (AANN). In this paper we present a novel algorithm called Self reconstructing Auto-Associative Neural Network (S-AANN) which is able to detect and isolate single faulty sensor via reconstruction. We have also extended the algorithm to be applicable in multiple faul...

متن کامل

Estimation of Soil Infiltration in Agricultural and Pasture Lands using Artificial Neural Networks and Multiple Regressions

Common methods to determine the soil infiltration need extensive time and are expensive. However, the existence of non-linear behaviors in soil infiltration makes it difficult to be modeled. With regards to the difficulties of direct measurement of soil infiltration, the use of indirect methods toestimate this parameter has received attention in recent years. Despite the existence of various th...

متن کامل

Rejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller

This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays.  An optimization procedure for a neural MPC algorithm based on this model is then developed. T...

متن کامل

SEISMIC DESIGN OF DOUBLE LAYER GRIDS BY NEURAL NETWORKS

The main contribution of the present paper is to train efficient neural networks for seismic design of double layer grids subject to multiple-earthquake loading. As the seismic analysis and design of such large scale structures require high computational efforts, employing neural network techniques substantially decreases the computational burden. Square-on-square double layer grids with the va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2018